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Abstract

In this paper we survey two multi-dimensional Scale
Saliency approaches based on graphs and the k-d par-
tition algorithm. In the latter case we introduce a
new divergence metric and we show experimentally
its suitability. We also show an application of multi-
dimensional Scale Saliency to texture discrimination.
We demonstrate that the use of multi-dimensional data
can improve the performance of texture retrieval based
on feature extraction.

1. Introduction

High level vision tasks usually rely on the results
provided by image processing or feature extraction al-
gorithms. The interest regions detected by feature ex-
traction algorithms should satisfy several properties:
they must be informative, distinguishable and invari-
ant to a wide range of transformations1. The work in
this paper is focused on the Scale Saliency algorithm
by Kadir and Brady [2]. This algorithm is theoretically
sound, due to the fact that it uses Information Theory in
order to search the most informative regions on the im-
age. Although its poor performance for matching prob-
lems [6], it has been shown to perform well in image
categorization tasks [5]. Furthermore, it has been suc-
cessfully applied before to this kind of problems [8][7].

The Scale Saliency algorithm [2] detects salient or
unpredictable regions on an image. Shannon’s entropy
is used to measure the saliency of an image region.
Given a pixel x, its entropy at scale s is computed
from the grayscale intensity pdf of the circular region
Rx of radius s, centered over x. The intensity pdf
is approximated by means of an intensity histogram
where Pd,s,x is the probability that the intensity value

1Several authors prefer the term covariant, referring to image fea-
tures that adapt to the transformation applied to the image.

d ∈ D is found in Rx (in the case of a grayscale image,
D = {0, . . . , 255}). The algorithm works as follows:
firstly, entropy is estimated for all pixels x in the im-
age, using all scales s in a range of scales between smin
and smax (Eq. 1). Next, entropy peaks (local maxima in
scale space) are selected (Eq. 2). Then, entropy peaks
are weighted by means of a self-dissimilarity metric be-
tween scales (Eq. 3). The aim of this step is to reinforce
salient features that were detected at its characteristic
scale. Finally, a subset of the salient features is selected,
in order of weighted entropy (Eq. 4). These selected
features are the most salient features of the image.

H(s, x) =
∑
d∈D

Pd,s,x log2 Pd,s,x (1)

S = {s : H(s− 1, x) < H(s, x) > H(s+ 1, x)} (2)

W (s, x) =
s2

2s− 1

∑
d∈D

|Pd,s,x − Pd,s−1,x| (3)

Y (s, x) = H(s, x)W (s, x) (4)

The application of the algorithm summarized above
to higher dimensional data is straightforward. For in-
stance, in RGB color images, where each pixel is as-
signed three different intensity values (corresponding to
the three RGB channels), the local intensity pdf may be
estimated from a 3D histogram. In general, for nD data,
the same algorithm can be applied using a nD histogram
for entropy and self-dissimilarity computation.

Two problems arise from this extension to the multi-
dimensional domain, due to the curse of dimensionality.
Firstly, the complexity order of the algorithm exponen-
tially increases with data dimensionality. And secondly,
higher dimensional data yields sparser histograms, that
are less informative. These issues make the use of the
original Scale Saliency algorithm unfeasible in the case
of n ≥ 4 dimensions.

This paper extends our previous work in [10]. We
summarize two different modifications of the Scale
Saliency algorithm in order to apply it to the multi-



dimensional domain. Both versions of this Multi-
dimensional Scale Saliency algorithm (MDSS) are
based on alternative entropy and self-dissimilarity (di-
vergence between scales) estimators. Therefore, no his-
tograms are used and we may overcome the previously
stated limitations of the original algorithm. The main
contributions of this paper are: firstly, we propose a new
divergence based on data partition, and we experimen-
tally demonstrate its suitability. Secondly, we analyze
both MDSS approaches in order to select the most ap-
propriate one for feature extraction tasks. Finally, we
show an example of application to texture categoriza-
tion.

2. MDSS based on K-Nearest Neighbour
Graphs

Firstly, we present a MDSS approach based on
graphs. In this approach, each pixel xi ∈ X is rep-
resented as a d-dimensional vector. The neighbour-
hood Rx of a pixel is represented by an undirected and
fully connected graph G = (V,E), being the nodes
vi ∈ V the d-dimensional vectors representing xi ∈ Rx
and E the set of edges connecting each pair of nodes.
The weight of each edge is the Euclidean distance in
Rd between its two incident nodes. Entropy and di-
vergence are estimated from the K-Nearest Neighbour
Graph (KNNG), a subset of the fully connected graph,
that connects each node to its k neighbours. In the case
of entropy estimation, we apply the method proposed
by Kozachenko and Leonenko [3]:

ĤN,k =
1

N

N∑
i=1

log
(
(N − 1)e−ψ(k)Bd(ρ

(i)
k,N−1)

d
)
(5)

were |V | = N , Bd is the volume of the d-
dimensional unit ball, ρ(i)k,N−1 is the k-nearest neigh-
bour of i when taking the rest of N − 1 samples, and
ψ(z) is the digamma function.

In the case of self-dissimilarity between scales, we
propose to apply the Friedman-Rafsky test. Let s be the
scale in which an entropy peak has been found. In order
to weight that entropy value, we must calculate the dis-
similarity with respect to scale s− 1. Let Xs and Xs−1
be the set of nodes of Rx at scales s and s − 1. Since
Xs−1 ⊂ Xs (new pixels are added to the previous ones
as we increase the scale), the test only requires to build
the KNNG from Xs and to count the amount of edges
in this KNNG that connect a node from Xs/Xs−1 to a
node from Xs−1. One minus this number of edges is
a consistent estimator of the Henze and Penrose diver-
gence.

3. MDSS based on the k-d partition algo-
rithm

The second MDSS approach is based on the k-d par-
tition algorithm by Stowell et al. [9]. As in the approach
presented above, each pixel in Rx is represented as a d-
dimensional vector. The d-dimensional feature space is
recursively split into cells following the data splitting
method of the k-d tree algorithm. At each level, data is
split by their sample median along one axis. Then, data
splitting is applied to each subspace until an uniformity
stop criterion is reached. The aim of this stop criterion
is to produce cells with uniform empirical distribution,
in order to best approximate the underlying pdf. The
data partition yields a set A = {Aj} of p cells, and then
entropy estimation is given by

Ĥ =

p∑
j=1

nj
n

log

(
n

nj
µ(Aj)

)
(6)

where µ(Aj) is the volume of the cell Aj , nj is the
number of samples in Aj and n is the the total number
of samples in Rx.

Regarding the self-dissimilarity between scales, we
propose a new divergence metric inspired by the k-
d partition algorithm. Our k-d partition based diver-
gence metric follows the spirit of the total variation dis-
tance [1], but may also be interpreted as a L1-norm dis-
tance. The total variation distance between two proba-
bility measures P and Q in the case of a finite alphabet
is given by

δ(P,Q) =
1

2

∑
x

|P (x)−Q(x)| (7)

Let f(x) and g(x) be two distributions, from which
we gather a set X of nx samples and a set O of no
samples, respectively. If we apply the partition scheme
of the k-d partition algorithm to the set of samples
X
⋃
O, the result is a partition A of X

⋃
O, being

A = {Aj |j = 1, . . . , p}. In the case of f(x), the prob-
ability of any cell Aj is given by

p(Aj) =
nx,j
nx

= pj (8)

where nx,j is the number of samples from X in cell
Aj . Conversely, in the case of g(x) the probability of
each cell Aj is given by

q(Aj) =
no,j
no

= qj (9)

where no,j is the number of samples from X in the
cell Aj . Since both sample sets share the same parti-
tion A, and considering the set of cells Aj a finite al-



phabet, we can compute the total variation distance be-
tween f(x) and g(x) as

D(O||X) =
1

2

p∑
j=1

|pj − qj | (10)

The latter distance metric can be use as a self-
dissimilarity measure in the Scale Saliency algorithm,
since it satisfies 0 ≤ D(O||X) ≤ 1. The minimum
value D(O||X) = 0 is obtained when all the cells Aj
contain the same proportion of samples from X and O.
By the other hand, the maximum value D(O||X) = 1
is obtained when all the samples in any cell Aj were
gathered from the same distribution.

4. Experimental results

In this section we introduce additional experiments
to those shown in our previous work [10]. Firstly we
test the validity of our k-d partition based divergence.
We also present an application of our algorithm to the
texture categorization problem.

The experiments in [10] were aimed to compare the
computational time of the MDSS algorithms and the
quality of the extracted features. In the former case we
demonstrated that the computational order decreased
from exponential (due to the use of histograms in the
original Kadir and Brady algorithm) to linear with re-
spect to data dimensionality. The computational ef-
ficiency of the k-d partition approach is remarkably
higher when compared to the rest of algorithmsIn the
case of the quality of the extracted features, we ap-
plied a repeatability test in order to check the stability of
the extracted features over a wide range of transforma-
tions, using the image dataset provided by Mikolajczyk
et al. [6]. The results showed that none of the MDSS
approaches performs better than the other one in all cir-
cumstances. From these experiments (and others not
included here due to the lack of space), and although
both approaches reported similar results in terms of re-
peatability we concluded that the k-d partition based ap-
proach is far superior to the graph based approach.

4.1. Divergence validation

In order to validate our k-d partition based diver-
gence, we compare its trend with that of the Friedman-
Rafsky test: we compare the divergence of two sam-
ple sets gathered from two Gaussian distributions, start-
ing with the same mean and variance, as we increase
the distance between Gaussian centers until the proba-
bility that the samples overlap is low. The results for
different data dimensionalities d are shown in Fig 1

Figure 1. Divergence metrics comparison.

(Friedman-Rafsky test in red, k-d partition divergence
in blue). In the case of both tests, the divergence (y
axis) increases with the distance between Gaussian cen-
ters (x axis). The values or Friedman-Rafsky test lie in
the range [0.5, 1]. The range of values in the case of our
k-d partition divergence depends on data dimensional-
ity, but it is generally wider and follows the trend of the
Friedman-Rafsky test.

5. An application: texture discrimination

In this section we show an application of our algo-
rithm to the texture discrimination method of Lazebnik
et al. [4]. In this method, texture images are represented
by means of signatures S = {(t1, w1), . . . , (tn, wn)},
where ti is a texton and wi is its relative weight. Firstly,
affine features are extracted from grayscale information
on the image, and a descriptor is computed for each
one. This descriptor may be a Rotation Invariant Fea-
ture Transform descriptor (RIFT) and/or a spin images
descriptor (for a complete description of both descrip-
tors, see [4]). Agglomerative clustering is applied to all
descriptors in an individual image in order to build its
signature. The textons are the center of these clusters,
and their relative weight is computed as the number of
descriptors in a cluster divided by the total number of
descriptors in the image. Signatures are compared by
means of the Earth Mover’s Distance (EMD – see [4]
for more detail). Our approach uses multi-dimensional
Scale Saliency for feature extraction. Features are ex-
tracted from 15D data, computed after applying a Gabor
filter bank (consisting of 15 Gabor filters with different
orientations and wavelengths) to all pixels on the image.

In Fig. 2 we show the results of our texture retrieval
experiment. In this experiment, that shows the perfor-
mance of a given texture representation, all images in
the Brodatz dataset2 are used as query image once. For

2http://www.ux.uis.no/∼tranden/brodatz.html



Figure 2. Results of the texture catego-
rization experiment.

each image query, we select images from the database
in increasing order of EMD. The result is a plot that
shows the average recall of all query images (being re-
call the number of images from the class of the query
image retrieved so far divided by the total number of
images in that class) versus the number of closest im-
ages retrieved. In Fig. 2 we compare the performance
of the grayscale Scale Saliency and k-d partition based
multi-dimensional Scale Saliency methods using only
RIFT (kadirrift and kdpeerift, respectively), only spin
images (kadirspin and kdpeespin), and combining RIFT
and spin images (kadir and kdpee). In order to combine
RIFT and spin images in the retrieval task, the total dis-
tance between two images is computed adding the nor-
malized EMDs estimated for each individual descriptor.

Multi-dimensional data increased the performance
of the texture retrieval task for each tested descriptor.
However, its impact is not as noticeable as the impact
of choosing an adequate descriptor. As can be seen in
Fig. 2, the average retrieval is strongly affected by this
last factor. The worst results are obtained for the case of
spin images. RIFT increases the average recall, but the
most significative improvement is achieved when com-
bining both.

6. Conclusions and future work

The Scale Saliency algorithm by Kadir and Brady
can be naturally extended to process multi-dimensional
data. However, its computational efficiency remarkably
decreases with data dimensionality. We survey two ap-
proaches of multi-dimensional Scale Saliency based on
alternative entropy and divergence metrics which com-
putational order is linear with respect to data dimension-
ality. Our analysis show that the k-d partition approach
should be preferred over the graph based approach. We
introduced a new divergence metric based on the k-d

partition algorithm and the total variation distance, and
we experimentally showed its suitability. Finally, we
showed a practical application of our approach in the
context of texture representation.

Our future work is addressed to evaluate the appli-
cation of multi-dimensional data in other Computer Vi-
sion problems, like video processing or image retrieval.
In the texture categorization context, we should also
study the impact of using different Gabor filter banks, or
even different input data. This is a combinatorial prob-
lem that may be treated with machine learning methods
like feature selection.
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