Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector

P. Suau and F. Escolano

{pablo,sco}@dccia.ua.es

Robot Vision Group University of Alicante, Spain

June 7th, 2007

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

1/21 I

A D b 4 A b

Outline

2 Method

- Entropy analysis through scale space
- Bayesian filtering
- Chernoff Information and threshold estimation
- Bayesian scale-saliency filtering algorithm
- Bayesian scale-saliency filtering algorithm

3 Experiments

• Visual Geometry Group database

4 Conclusions

Outline

Method

- Entropy analysis through scale space
- Bayesian filtering
- Chernoff Information and threshold estimation
- Bayesian scale-saliency filtering algorithm
- Bayesian scale-saliency filtering algorithm

3 Experiments

Visual Geometry Group database

4 Conclusions

3 / 21 IBPRIA 2007

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Local feature detectors

- Feature extraction is a basic step in many computer vision tasks
- Kadir and Brady scale-saliency
 - Salient features over a narrow range of scales
 - Computational bottleneck (all pixels, all scales)
- Applied to robot global localization → we need real time feature extraction

Salient features

IBPRIA 2007

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Outline

2 Method

- Entropy analysis through scale space
- Bayesian filtering
- Chernoff Information and threshold estimation
- Bayesian scale-saliency filtering algorithm
- Bayesian scale-saliency filtering algorithm

3 Experiments

Visual Geometry Group database

4 Conclusions

6/21 I

• (10) • (10)

Entropy analysis through scale space

Entropy analysis through scale space

Intuitive idea → entropy analysis through scale space

"Homogeneus regions at highest scale will probably be also homogeneus at lower scales"

Bayesian filter for the Kadir scale-saliency detector

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Image: A matrix

Entropy analysis through scale space

Estimation of multiple regression by plane Hough transform

$$f_3 = 0 \times f_2 + 1.01 \times f_1 + 0$$

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

8 / 21 IBPRIA 2007

-

versidad de Alican

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Entropy analysis through scale space

Basic approach \rightarrow threshold σ

Apply scale-saliency algorithm only to those pixels in $X = \left\{ x | \frac{H_D(x, s_{max})}{H_{max}} > \sigma \right\}$ where $H_{max} = max_x(H_D(x, s_{max}))$

- How to estimate threshold σ before applying scale-saliency to an image?
- Can an only threshold be applied to the whole set of images?

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Bayesian filtering

- $\bullet~\mbox{Konishi}~\mbox{et}~\mbox{al.},\,2003 \rightarrow \mbox{bayesian}$ edge detection
- Based on the calculation of distribution probabilities $P(\phi|on)$ and $P(\phi|off)$ where $\phi = H_D(s, x)/H_{max}$

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

10/21

4 3 > 4 3

< A

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Chernoff Information and threshold estimation

- Can an only threshold be applied to a set of images?
 - Chernoff information

$$\mathcal{C}(p,q) = -\min_{0 \leqslant \lambda \leqslant 1} \log(\sum_{j=1}^{J} p^{\lambda}(y_j) q^{1-\lambda}(y_j))$$

 Low C(P(θ|on), P(θ|off)) → set of images is too heterogeneus

IBPRIA 2007

11/21

Chernoff Information and threshold estimation

Chernoff Information and threshold estimation

- How to estimate a threshold before applying scale-saliency to a set of images?
 - Only $H_{max} = H_D(s_{max}, x)$ is needed
 - For a given threshold T, log-likelihood ratio criteria allows to discard image points:

 $\log(P(\phi|on)/P(\phi|off)) < T$

 Threshold T calculation by means of Kullback-Leibler distance (Cazorla et al., 2002):

$$-D(P_{off}||P_{on}) < T < D(P_{on}||P_{off})$$

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Bayesian scale-saliency filtering algorithm

Training (for each image class)

- Estimate P(φ|on) and P(φ|off) using a set of training images
- Evaluate C(P(φ|on), P(φ|off)) → is the image class too heterogeneus?
- Caculate $D(P_{off}||P_{on})$ and $D(P_{on}||P_{off})$
- Select a threshold in the range $-D(P_{off}||P_{on}) < T < D(P_{on}||P_{off})$

Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm

Bayesian scale-saliency filtering algorithm

Filtering

• Calculate $\phi_x = \frac{H_{D_x}}{H_{max}}$ at s_{max} for each pixel x

•
$$X = \left\{ x | \log \frac{P(\phi_x | on)}{P(\phi_x | off)} > T \right\}$$

• Apply Kadir-Brady algorithm only to pixels $x \in X$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

/isual Geometry Group database

Outline

2 Method

- Entropy analysis through scale space
- Bayesian filtering
- Chernoff Information and threshold estimation
- Bayesian scale-saliency filtering algorithm
- Bayesian scale-saliency filtering algorithm

3 Experiments

Visual Geometry Group database

4 Conclusions

< ≣ ► < ≣ 15 / 21

Visual Geometry Group database

Visual Geometry Group database

http://www.robots.ox.ac.uk/~vgg/

Universitat d'Alacant Universidad de Alicante

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

16/21

Method Experiments Conclusions

Visual Geometry Group database

Visual Geometry Group database

Test set	Chernoff	Т	% Points	% Time	ϵ
airplanes_side	0.415	-4.98	30.79%	42.12%	0.0943
		0	60,11%	72.61%	2.9271
background	0.208	-2.33	15.89%	24.00%	0.6438
		0	43.91%	54.39%	5.0290
bottles	0.184	-2.80	9.50%	20.50%	0.4447
		0	23.56%	35.47%	1.9482
camel	0.138	-2.06	10.06%	20.94%	0.2556
		0	40.10%	52.43%	4.2110
					Universitat d'Alac Universidad de Al
			< □	▶ < 🗇 ▶ < ⊇ ▶ .	ৰ≣⊧ ≣ •?৭

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

17/21

IBPRIA 2007

Alicante

Outline

2 Method

- Entropy analysis through scale space
- Bayesian filtering
- Chernoff Information and threshold estimation
- Bayesian scale-saliency filtering algorithm
- Bayesian scale-saliency filtering algorithm

3 Experiments

Visual Geometry Group database

4 Conclusions

Conclusions

Kadir-Brady scale saliency algorithm

- Computational bottleneck \rightarrow all pixels, all scales
- Intuitive idea \rightarrow entropy analysis through scale space

"Homogeneus regions at highest scale will probably be also homogeneus at lower scales"

Our method

- $\bullet~$ Bayesian analysis \rightarrow threshold T for each image class
- Pixels having low entropy at highest scale are discarded
- Scale-saliency algorithm is applied to the rest of image
- Threshold T may vary in a precomputed range depending on application

A D M A A A M M

Current work and future improvements

- New filters \rightarrow filter cascade
- Multidimensional scale-saliency

• Combination of these two methods?

Bayesian filter for the Kadir scale-saliency detector

4 A N

Current work and future improvements

- New filters \rightarrow filter cascade
- Multidimensional scale-saliency

Combination of these two methods?

Bayesian filter for the Kadir scale-saliency detector

20 / 21

Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector

P. Suau and F. Escolano

{pablo,sco}@dccia.ua.es

Robot Vision Group University of Alicante, Spain

June 7th, 2007

P. Suau and F. Escolano

Bayesian filter for the Kadir scale-saliency detector

21/21 |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))