JavaVis: open source code for computer vision
subjects *

J.M. Perez, B. Bonev, P. Suau, D. Viejo, and M. Cazorla

Dept. de Ciencias de la Computacién e Inteligencia Artificial
University of Alicante, P.O. Box 99, E-03080 Alicante
{jmperez,boyan,pablo,dviejo,miguel }@dccia.ua.es

Abstract. In this paper we present the open source project JavaVis,
oriented to Computer Vision teaching. It consists of a framework with
several features that make it useful for that purpose. Some of them are:
a) image format, supporting frames and bands for sequence processing,
b) code with many algorithms available, it contains implementations of
some of the most widely used algorithms in computer vision, ¢) 3D data
support, d) a visual desktop for visualizing partial results. It was designed
to be easy to use: the user does not have to deal with internal structures,
and adding a new algorithm is a simple task. J

We have developed three different modules, based on three different needs
we have noticed in our subjects. The first one is a basic library for image
processing. Besides the previously commented features, it supports geo-
metrical data (edges, segments, points, etc.). The second module is based
on the same working schema as the first one, but applied to 3D data.
These two modules are enough for testing many well-known algorithms.
They also suit the programming needs of students and teachers, as they
can easily develop their own algorithms for the JavaVis framework. All
JavaVis functions can be launched both from command line, as well as
with the JavaVis Graphical User Interface. Finally we have extended
JavaVis with a third module consisting of a visual desktop where differ-
ent Computer Vision functions can be easily placed and connected. Its
purpose is to visualize intermediate results in processes involving several
functions, helping their better understanding.

JavaVis, as its name suggests, is implemented in Java.

1 Introduction

Computer vision is an important subject in computer science degrees. For labo-
ratory lectures, we need a tool that is complete and easy to use. In this work we
present a Java library which is oriented to teaching. This means that we have
designed and built the library thinking in readability and understanding instead
of efficiency.

We have developed three different modules, based on three different needs we
have discovered in our vision related subjects. The first one is a basic library to

* This work has been partially supported by project GV06/134 from Generalitat Va-
lenciana (Spain).

process images. It is the oldest one and it follows a special file and image format
enabling easy sequence processing; it incorporates geometrical data (edges, seg-
ments, points, etc.) and it has implemented several well-known computer vision
algorithms. The students can, easily, develop their own algorithms. The second
module is based on the same working schema than the first one, but applied to
3D data. Finally, we have developed a visual desktop in order to visualize how
the different algorithms work and the results of combining them.

Several libraries and systems have been developed for computer vision re-
search and education. First of all, we will describe libraries written in any pro-
gramming language, and we will conclude with Java libraries. Khoros library [7]
is available for Unix platforms, Windows and MacOs. It incorporates a visual
programming environment where programs are created by placing toolboxes:
rectangular icons that represent operators, which are simply stand-alone pro-
grams written in C, C++, Java or a script language. Each operator performs
on an input image or dataset, producing an output image. Connections that
represent data flow between the toolboxes are created by clicking the mouse. To
complete the visual programming capabilities, there are advanced programming
language constructs such as loops, procedures and control structures. This li-
brary is currently not freeware nor open source. Open Computer Vision Library
(OpenCV) [8] is available for Windows and Linux. It is distributed under Intel’s
licence for both commercial and non-commercial (research and teaching) pur-
poses. The library includes over 300 image analysis and processing methods from
morphology, geometry, image treatment, etc., up to the recently added meth-
ods for computing stereoscopic correspondence, face recognition or 3D tracking.
Although OpenCV is one of the most complete and efficient computer vision
libraries, it is not portable enough for other operating systems. Also, OpenCV
does not incorporate a Graphic User Interface (GUI) to visualize and evaluate
results. VIGRA [9] is a novel computer vision library which focuses on cus-
tomizable algorithms and data structures. The library was built using generic
programming as indicated by the Standard Template Library (STL). By writ-
ing a few adapters (image iterators) it is possible to use VIGRA’s algorithms
in computer vision applications. Nevertheless, the library does not have enough
implemented algorithms, nor does it have a GUI.

On the other hand, there are a few libraries written in Java. Java Imaging
and Graphics Library (JIGL) [4] was developed at Brigham Young University
to make programming both course-level and research-level image-handling al-
gorithms as easy as possible. JIGL extends standard Java image-handling ca-
pabilities. It is based on the Java Advanced Imaging (JAI) [3] development by
Sun Microsystems. JAI is a base library which focuses primarily on web-based
applications. Nevertheless, JAI is not useful for computer vision applications.
This is why JIGL was developed. It is built around a set of image classes that
support individual pixel access, image-wide operations and image-image opera-
tions. Nevertheless, the number of included computer vision algorithms is low.
Image Processing in Java (IPJ) [10] is another JAI-based library. The IPJ goal is
to expand JAT’s functionalities with computer vision algorithms. The methods

included in the library are spatial filters, convolutions, compression, morpho-
logical filtering, boundary processing and chromatic light. Nevertheless, some
of the more elaborated methods begin in lack as, for example, sequence pro-
cessing, object tracking, 3D stereo vision, etc. Furthermore, IPJ does not have
templates for adding new algorithms to the library, nor does it have a GUIL Java
Vision Toolkit (JVT) [5] is based on the JAI library, adding computer vision
algorithms for 2D and 3D images. JVT provides implementations for image-
handling filtering, edge detection, segmentation, Hough transform, morphology
and colour analysis. It also includes a GUI application, which makes JVT easy
to use for end-users and developers alike. JVT is designed for students using the
image-computation template provided to implement new algorithms. The main
problem with JVT is the lack of sequential image handlers. ImageJ library [2]
is based on three fundamental features. First, the use of macros, which allow
users to automate tasks and create custom tools; second, it is possible to extend
the capabilities of ImageJ by developing plug-ins; and finally, we can process an
entire stack of related images using a single command. The library core includes
several image handlers. All the related computer vision functions are incorpo-
rated as plug-ins. Also, ImageJ contains a GUI which allows end-users to launch
the library algorithms and evaluate the results. This library is widely accepted
in scientific areas, although the lack of templates for the development of new
algorithms makes it less appropriate for educational purposes.

The rest of the paper is organized as follows: In Section 2, we describe the
main features of JavaVis. Section 3 explains how the 3D GUI works and Section 4
explains the JavaVisDesktop. Finally, some conclusions are drawn in Section 5.

2 JavaVis

JavaVis was designed as an open source tool for computer vision teaching. This
section will introduce its main features. We began to develop JavaVis following
the same philosophy of work than Vista [1]. Vista was a computer vision library
written in standard C which tried to simulate the object-oriented programming.
The features of Vista were very attractive for developing algorithms in vision and,
in fact, many researchers used it, but its creator left the project. Our objective
was to create a similar library with a totally OO language. Most of the features
of JavaVis are based on the operation of Vista.

In JavaVis we have defined both a file and an image format that allow to
work with image sequences. Some computer vision algorithms have to manage
image sequences. For example, optical flow algorithms use several images to
estimate movement and stereo computation needs two or three images to work.
Furthermore, images are usually composed by different bands, for example, a
RGB color image can be stored in three different bands. In this way, JavaVis
handles its own image format that enables it to manage image sequences and
bands.

Each image in JavaVis is composed of one or several frames. A frame repre-
sents an image that can be of two types: bitmap or geometric. A bitmap frame

is an image represented as a matrix in which each element is a pixel (picture
cell). JavaVis has five types of bitmap frames: BIT, BYTE, WORD, REAL and
COLOR. A brief explanation of frame types is showed in Table 1. In addition,
each bitmap frame can be formed by one or several bands.

Table 1. Bitmap frame types in JavaVis

Type |Description

BIT |Defines a binary image where a pixel value may be 0 or
1
BYTE |It represents the classic gray scale image, with pixel val-
ues in the range [0, 255]

WORD |Uses a range of [0, 65525]

REAL |It is the only format which allows negative values, useful
in convolution and gradient computations. It is repre-
sented using the float type of Java

COLOR/|Color image (R, G, B) formed by a three bands image,
each band being of BYTE type

On the other hand, a geometric type frame manages information in a differ-
ent way. For example, the SEGMENT frame type just stores the coordinates (x
and y) of the initial and end defining points of a segment. A SEGMENT type
frame may have several segment objects stored not into a pixel matrix but into
a segment object list. So the representation of geometric frames is more com-
pact and computations are faster. The available geometric types are showed in
Table 2. This kind of frames are useful in several computer vision algorithms.

Table 2. Geometric frame types in JavaVis

Type |Description
POINT |The simplest type, a 2 dimensional point.

SEGMENT |It represents segments. A segment consists of an initial
and an end point.

EDGES |It represents a set of points forming an edge. They keep
an adjacent relation, i.e. the first point is adjacent to
the second, the second to the third an so on. Adjacency
between the last point and the first one is not necessary.
POLY |It contains a set of points forming a polygon. The points
form a circular sequence.

A sequence can be o rganized in two ways: several frames in a sequence, or
several bands per frame, which can also form a part of a sequence. However, in

order to insert several bands in the same frame, every band must have the same
size and be of the same type whereas different frames can have different size,
type and number of bands. In Fig. 1 we show an example of an image in JavaVis.
Finally, we have developed a special file format to store all information from our
image format. It’s called JIP format or JIPZ for compressed files in order to save
disk space. JavaVis can read both JIP and other file formats such as JPEG or
GIF, converting them into its own image format to work with them. For storing
source images and computer vision algorithm results the JIP or JIPZ formats
can be used, an exporting to JPEG is also allowed.

Bands

Fig. 1. A sequence in JavaVis having three frames. The second one is formed by several
bands and the third one is geometric.

An important point in JavaVis is the organization of its functions (imple-
mentation of algorithms), as it is important for other users to be able to easily
implement their algorithms in a standarized way. A function in JavaVis is a
Java class which implements an algorithm or method. A function inherits from
an abstract class JIPFunction. In order to implement an algorithm, only the
function code must be developed and input and output parameters specified.
When a function is executed, neither the user nor the programmer has to check
the parameters; JavaVis does it automatically.

There are three ways to execute a function. The first one is from command
line: the Launch class can execute a fucntion of the library, after the function
name and its parameters are specified. This class checks the values entered
(name, type and range of the parameters) and returns an error if something
is wrong. Otherwise, the function is executed. The execution takes an input file
and generates an output file. The output file has the same sequence as the input
file, where every frame has been processed with the function. The second way
to execute a function is from the graphical user interface (see Fig. 2). A func-

Fichero Apariencia Vista Escala Fi i i ia Ayuda

H A || N || Fum:iumas‘

Segmentos: 0
Puntos: 0
Poligonos: 0

Geometria: On
Modo
@ Segmentos
) Puntos
) Poligonos

Accion
Seleccionar :

Tipo: [No seleccionado]
Inicio: {-1,-1)

Fin: (-1,-1)

Longitud: 0 Pixeles

4] 1]

Tamafio de frame: 189x189 Frame: |0:COLOR:haboon "
Coords: (OUT} Banda: |COLOR-Bands RGB |~
‘falor: { OUT) '

Progreso| 0%

Fig. 2. Graphic user interface used to visualize images and to apply functions.

tion can be executed by introducing the input parameters in a window and the
parameters are checked too. Furthermore, the function can be applied to all the
sequence or just to the current frame. The final way to use a function is from
another function. Each function can use any existing function defined in the li-
brary. Note that despite the possibility of executing a function in three different
ways, it is only defined once, and there is no need of additional configuration of
the JavaVis environment but just adding the class for the function in a directory.

Another important issue regarding functions is the definition of parameters.
A standard is defined for both input and output parameters for JIPFunctions.
This is done by means of a class JIPParameter. Thus, the GUI can set and get
parameters for any implemented JIPFunction.

Finally, regarding function implementation, it must be noted that Matlab
linking is possible for intermediate results, as functions for transforming an image
to a Matlab matrix are provided. JavaVis is mainly used in academic and research
areas, so linking with other mathematical and Computer Vision related programs
is a very usual situation.

Table 3 lists some of the functions already included in the distribution of
JavaVis. Many of them are implemented by undergraduate students who used
JavaVis for their projects and needed to implement new functions. The main-
tainers of JavaVis have revised their work before including it into the JavaVis
distribution.

Table 3. JavaVis JIPFunctions

Group

Functions

Transform

Adjustments
Smoothness

Convolution

Manipulation

Geometry

Edges

Math Morph
Applications
ImageBD
Ring Projection

Other

They allow image format conversion: FColorToGray ,
FGrayToGray , FGrayToColor , FRGBToHSB , FRG-
BToHSI , FRGBToYCbCr , FBinarize .

Image adjustment: FBrightness , FContrast , FGamma ,
FEqualize , FSharpen , FSharpenMore .

Image smoothness, reducing noise: FSmoothAverage |,
FSmoothMedian , FSmoothGaussian .

Implement several ways to convolution: FUser3x3 ,
FUser5x5 , FConvolvelmage , FConvolveAscii , FGabor

Manipulate the image, rotating it, scaling it, and so on:
FOpenWindow , FSkew , FFlip , FFuzzyKmeans , FK-
means , FMirror , FScale , FRotate , FCrop , FWaveHoriz
, FWaveVert | FNegate , FNoise , FMaximum , FMini-
mum , FPixelate .

Apply functions to the geometric data: FAddPoint ,
FAddSegment , FRandomPoint , FRandomSegment ,
FInterSegment , FGeoToGray , FHoughCirc , FHough-
Line .

Calculate and operate with edges: FCanny , FLink ,
FSegEdges , FNitzberg , FSusan , FGrad , FMag ,
FPhase .

Implement morphological operators: FErode , FDilate ,
FClousure , FOpening .

Functions which use other functions and implement com-
plex application: FCountCoins .

Makes image Data Base searching: FCalcHistoColor ,
FCalcHistoBD , FSearchlmage , FSOM .

Manages omnidirectional images: FRectifyOmnidir ,
FCleanOmnidir , FRingCreateMask

Functions non included in previous groups: FHistogram ,
FSkeleton , FOp , FSegmentHSB , FBlobs , FManhattan
, FCapture , FAnnealing, FPca , FPcaRecon, FFlow .

3 JavaVis3D

3D data is a special data type formed by a set of points where each point is
described by 3 coordinates (usually X, Y and Z) and, sometimes, a gray or
color level associated to this point. These data come from a stereo camera or a
3D laser. We have realized that others computer vision libraries do not manage
3D data and we think it could be useful to incorporate a tool for managing them.

Java provides a 3D API: Java3D. We have used this API in order to incor-
porate a GUI for showing 3D data (see Fig. 3). The GUI is built on a typical

3D scene in Java3D. Data is shown as points and they can be rotated, zoomed
in and out, and translated. We can also change several properties like aliasing,
color and point size.

Fichero Funciones Ayuda
20 | Desktop | 3D |
3 | =

4
¥ Tipo: #

Num. Pixels: #
Tamaiio de punto: #

Antialias: ¥

Frame: ||

Fig. 3. JavaVis 3D Gui.

File format is different from images. 3D data are represented by a list of
coordinates and, if available, color information. File has a header with metadata
information and then the list of points, one for line. It supports several frames
(a sequence) like images, but not bands. Functions follow the same schema than
previously: they receive and return an 3D data object. Several additional classes
and methods have been implemented for data manipulation.

4 JavaVisDesktop

Another new feature we have recently incorporated to JavaVis is JavaVis Desk-
top (see Fig. 4). The goal was to build a tool to allow a better understanding
of partial results when processing an image. Different algorithms may be used
in order to build more complex routines. Fig. 5 shows an example of an algo-
rithm that counts the number of coins in an image. The algorithm is built using
several already implemented algorithms, like Hough transform [11] and Canny
algorithm [12]. The Desktop utility allows us to check partial results, showing
the images obtained applying an algorithm.

This tool allows to join a sequence of functions, like an automata. Each node
in the sequence is a function (algorithm) from JavaVis. Each node shows the

[Fichero 'Generar ﬁwd;a

Desklnp 3 |
SEIEEERERE

. FLoadimage
D MG
Run

FCanny

Params P MG

Run

Params

&l Fuink
MG
Run

Params

Fig. 4. JavaVis Desktop.

result of applying its algorithm as a thumbnail image. The full-size result of
each step can be seen by clicking on the thumbnail. The result is only available
if the function has been successfully executed. Each node includes a button to
execute its function, as well as a button for setting its specific parameters.

This new routine created as a sequence of other algorithms, can be easily
added to JavaVis as a new function, with a button on the Desktop interface.
Thus, the user can run this new function from the JavaVis interface, from com-
mand line, or to use it from a java program. Also this is a way to facilitate the
sharing of new Computer Vision (CV) algorithms. The aim is to impulse the
community to incrementally construct the CV library. Many CV algorithms are
easy to implement if some basic functions are already developed, as seen in the
previous coin counting example. Also, the sequence of function, together with
the parameters of the functions is saved in XML format, for further editing or
running it in the JavaVis environment.

5 Conclusions

In this paper we have introduced our open source framework for teaching com-
puter vision written in Java: JavaVis. Its features include a new image format
capable of handle images and geometrical data, with multiple bands and frames
for sequence processing, several launching methods (including graphical inter-
face) and a large quantity of implemented computer vision algorithms. We have
described the recently new modules added to JavaVis: the desktop, useful to
understand how final result is obtained from partial results, and Javavis3D to
support 3D data. This tool have been used during past years in computer vision

Fig. 5. Two examples of counting coins. The white circumferences are the coins de-
tected. Note that the CD is not detected as it has a different color, and the inner circle
of several coins is not detected too.

subjects in University of Alicante. Open source makes easier some tasks needed
during our teaching experience: students can examine the code and see how al-
gorithms are implemented, and as a consequence, how they work; and also, new
functions can be easily added.

Our framework is under continuous development and improvement. New vi-
sion algorithms implemented by students and revised by teachers will be in-
cluded. Currently we are developing a new version of JavaVis. It will be available
by march 2007. Connectivity with Matlab could also be improved.

References

1. 2006. The Vista website. http://www.cs.ubc.ca/nest/lci/vista/vista.html.

2006. The imagej website. http://rsb.info.nih.gov/ij.

2006. The java advanded imaging website. http://java.sun.com/products/java-

media/jal.

2006. Java imaging and graphics library. http://rivit.cs.byu.edu/jigl.

2006. The java vision toolkit website. http://marathon.csee.usf.edu/ mpowell/jvt.

2006. Javavis web site. http://javavis.sourceforge.net.

2006. Khoral. http://www.khoral.com.

2006. Open source computer vision library.

http://www.intel.com /research/mrl/research/opencv

9. 2006. The vigra library website. http://kogs-www.informatik.uni-

hamburg.de/ koethe/vigra.

10. Lyon, D. 1999. Image Processing in Java. Prentice Hall.

11. Duda, R. and Hart, P. “Use of the Hough transformation to detect lines and curves
in pictures” (1972) Communications of the ACM, 15 (1), pp. 11-15

12. Canny, J. “A computational approach to edge detection”. (1986) IEEE Trans. on
Pattern Analysis and Machine Intelligence, 6 (8)

@w N

® N oo

